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Cross-Modal Retrieval with Partially Mismatched
Pairs

Peng Hu, Zhenyu Huang, Dezhong Peng, Xu Wang, Xi Peng

Abstract—In this paper, we study a challenging but less-touched problem in cross-modal retrieval, i.e., partially mismatched pairs
(PMPs). Specifically, in real-world scenarios, a huge number of multimedia data (e.g., the Conceptual Captions dataset) are collected
from the Internet, and thus it is inevitable to wrongly treat some irrelevant cross-modal pairs as matched. Undoubtedly, such a PMP
problem will remarkably degrade the cross-modal retrieval performance. To tackle this problem, we derive a unified theoretical Robust
Cross-modal Learning framework (RCL) with an unbiased estimator of the cross-modal retrieval risk, which aims to endow the cross-
modal retrieval methods with robustness against PMPs. In detail, our RCL adopts a novel complementary contrastive learning paradigm
to address the following two challenges, i.e., the overfitting and underfitting issues. On the one hand, our method only utilizes the
negative information which is much less likely false compared with the positive information, thus avoiding the overfitting issue to PMPs.
However, these robust strategies could induce underfitting issues, thus making training models more difficult. On the other hand, to
address the underfitting issue brought by weak supervision, we present to leverage of all available negative pairs to enhance the
supervision contained in the negative information. Moreover, to further improve the performance, we propose to minimize the upper
bounds of the risk to pay more attention to hard samples. To verify the effectiveness and robustness of the proposed method, we
carry out comprehensive experiments on five widely-used benchmark datasets compared with nine state-of-the-art approaches w.r.t.

the image-text and video-text retrieval tasks. The code is available at https://github.com/penghu-cs/RCL.

Index Terms—Cross-modal retrieval, mismatched pairs, complementary contrastive learning.
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1 INTRODUCTION

F Or a given query of one modality, cross-modal retrieval
aims at retrieving the relevant instances from another
modality, which has attracted considerable attention from
academic and industrial communities [1], [2], [3], [4], [5]. In
recent, a large number of approaches have been proposed in
the decades, which could be roughly classified into the cate-
gory of representation learning [1], [2], [6], [7], and similarity
learning [3], [4]. Although these methods have achieved
promising performance, their success heavily relies on the
well-matched cross-modal pairs. In real-world applications,
it is extremely expensive and even impossible to collect such
clean data [8]. Hence, is it possible to explore an economic
way to solve this problem? In this paper, we attempt to
answer and address this practical question.

To alleviate the labor-intensive costs in labeling, one
possible way is to collect co-occurrent cross-modal pairs
from the Internet [8], [9]. For example, an image and its
surrounding textual description on the web page could be
regarded as an image-text pair in nature. Although such
a data collection approach is economic, it will inevitably
introduce a lot of mismatched pairs even with rigorous
filtering and post-processing steps [10]. To be specific, some
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Fig. 1: A toy example to illustrate our idea. Different from
Positive Learning (PL) paradigm, our Complementary Con-
trastive Learning (CCL) solution utilizes negative (see blue
balloon) instead of positive (see red balloon) information,
thus embracing the robustness against PMPs.

irrelevant cross-modal samples will be wrongly treated as
the relevant pairs, which will undoubtedly degrade the
performance of cross-modal retrieval. Such a PMP problem
is less touched so far, to the best of our knowledge.

The most similar paradigm to PMPs might be learning
with noisy labels. To eliminate the influence of noisy labels,
a large number of approaches have been proposed in past
years, such as correction methods [11], [12], adaptive train-
ing strategies [13], [14], [15], [16], semi-supervised learning
paradigms [17], [18], [19], robust loss functions [20], [21],
etc. Although these methods have achieved great success
in numerous applications, they are always specifically de-
signed for the scenarios of unimodal classification, which
cannot handle the multimodal data focused on in this paper.
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In addition, more distinctively, these studies consider the
errors in the category annotation of a given sample, whereas
the PMPs focus on the mismatching errors of two associated
samples across different modalities. To transform cross-
modal retrieval to cross-modal classification, each sample
should be compared with all training samples across differ-
ent modalities. This will remarkably increase computational
and storage complexity, and may even be infeasible for
complex models and large datasets. Therefore, to solve the
PMP problem, one has to simultaneously consider noisy
supervision, large “category” size, and cross-modal discrep-
ancy, thus remarkably making the difficulty in cross-modal
model optimization.
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Fig. 2: A toy example to show the challenge of negative
learning (NL, a.k.a. complementary learning) for cross-
modal retrieval. (a) shows that traditional complementary
learning cannot obtain the correct optimization direction,
which makes the anchor “O” apart from “A” but close to “C”
and “D”, because the complementary label is less informa-
tive than the ordinary one. In addition, the anchor will suffer
from the instability issue as it will only affect by a single
negative point at any instant, acting like Brownian motion.
More specifically, when the particle is very fine in flowing
fluid, there are only a few molecules around to interact with
it, thus the random interaction will produce an imbalance
force to perturb the particle movement. (b) illustrates that
the resultant of all negative information could provide a
strong and correct optimization direction, thus helping our
method to converge. More intuitively, for larger particles,
there are much more molecules all around to interact with
them, and thus the interaction forces from all directions will
cancel out the inter randomness and produce the correct
resultant force along the flowing direction.

To tackle the PMP problem, we propose a general Robust
Cross-modal Learning framework (RCL) to learn similarities
for cross-modal retrieval as shown in Fig. 3. In brief, RCL
achieves cross-modal instance-level retrieval by using a
Cross-Modal Contrastive Learning module (CMCL). Due to
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the existence of PMPs, vanilla contrastive learning (CL) aims
to learn common representations by maximizing the mutual
information between positive pairs, which would overfit
the wrong supervision and thus lead to inaccurate predic-
tions. To tackle this problem, we derive a Complementary
Contrastive Learning paradigm (CCL) with an unbiased
estimator of the retrieval risk using negative information to
enhance the reliability of the supervision. More specifically,
different from traditional CL paradigm [1], [2], [22], [23], our
CCL paradigm exploits negative (complementary) instead
of positive information to train neural networks, e.g., “A and
C are not matched” as shown in Fig. 1. Clearly, the comple-
mentary information is much more unlikely to provide the
false ground truth compared with the positive information,
thus avoiding overfitting to false supervision. For example,
let the visual sample V; be wrongly labeled as matching
to a textual sample T; in p probability. Assuming both the
noise and pair selection follow the uniform distribution,
then N (N >> 1) selected pairs {(V;, T;)}}; will consist
of one positive pair and N — 1 negative pairs for a given
sample V;. Hence, one could obtain that V; and T | j#i are
correctly labeled as unmatched in 1— 325 ~ 1 probability.
In other words, the correction probability of complementary
information is remarkably larger than that of a positive one,
i.e.,l—(N’%l) >1-p.

In practice, however, it is non-trivial and non-
straightforward to employ complementary learning (a.k.a.
negative learning) [17], [24], [25] for cross-modal retrieval,
especially, in the presence of PMPs. To be specific, almost all
existing works mainly study complementary learning in the
scenario of classification, and it is still unclear how to exploit
its potential in retrieval. Based on the discussion mentioned
above, it is hard even impossible to convert cross-modal
retrieval into cross-modal classification due to the high com-
putation costs. In addition, once complementary learning is
applied to retrieval, the model would underfit the latent
data distribution and thus suffer from the convergence
issue. In detail, the standard complementary learning will
only push away a few selected negative pairs. As a result,
the existence of the other massive negative samples will
make it difficult in converging. It should be pointed out
that, although some complementary learning studies [17],
[26] have been conducted to solve the underfitting problem
in classification, the proposed strategy is infeasible for the
retrieval scenario due to two facts. On the one hand, the
convergence of the retrieval models deteriorates more se-
riously than the classification models with complementary
learning. On the other hand, it will take an over-expensive
computational cost which is proportional to the number of
instances.

Interestingly, the above instability issue is much similar
to the motion of particles in slowly flowing fluid [27].
Namely, the large particles will more stably move along the
flowing direction compared with the fine particles. To be
specific, in the flowing fluid, the liquid molecules have two
moving directions: the flowing direction and the random
direction of thermal motion. From the view of microscopic
particles, a given very fine particle will be only affected by
the random interaction of a few molecules at any instant.
As a result, a large enough net resultant force will be easily
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produced to bring the particle towards a random direction,
i.e., leading to Brownian motion. In contrast, for a larger
particle, there are more molecules around it to produce
random interaction forces from all directions to cancel out
the randomness, thus leading to the net resultant force in
the correct direction, i.e., the direction of fluid flowing [27]
as shown Fig. 2. To summarize, more participants will
alleviate the randomness brought by different ones, thus
enabling large particles to have greater stability. Motivated
by the aforementioned relative stability of large particles, we
propose directly increasing the number of participants to
improve the stability of complementary contrastive learn-
ing, i.e., leveraging all available negative pairs to alleviate
the randomness caused by few participants in the vanilla
complementary learning as shown in Fig. 2. Moreover, to
tackle the underfitting issue faced by the estimated risk, we
propose to minimize the upper bounds of the risk to pay
more attention to hard samples.

The main contributions and novelties of this work could
be summarized as follows:

e We derive a general Robust Cross-modal Learning
framework (RCL) which is specifically designed to
solve the less-touched PMP problem in cross-modal
retrieval. The proposed method employs a con-
trastive learning module (i.e., CMCL) to formulate
cross-modal retrieval as an N-way retrieval and a
novel complementary learning approach (i.e., CCL)
to alleviate the overfitting issue faced by CMCL.

o To address the underfitting issue faced by the vanilla
complementary learning methods, CCL employs all
available instead of single negative information to
achieve convergence, inspired by Brownian motion.
Moreover, we propose to minimize the upper bounds
of the estimated risk to further alleviate the under-
fitting problem. Therefore, that makes it possible to
apply complementary learning to retrieval.

o To demonstrate the effectiveness of the proposed
method, we conducted extensive experiments on
three image-text benchmark datasets (MS-COCO,
Flickr30K, and CC152K) for image-text matching,
and two video-text benchmark datasets (MSVD and
MSR-VTT) for video-text retrieval. The experimental
results empirically verify that our RCL can boost the
existing cross-modal methods by remarkable mar-
gins, especially under large mismatching rates.

2 RELATED WORKS

In this section, we will briefly review some related works on
cross-modal retrieval and noisy label learning.

2.1

Cross-modal retrieval attempts to retrieve the relevant in-
stances from different modalities for a given query, wherein
the key is to measure the cross-modal similarity. Dur-
ing decades, a variety of cross-modal retrieval methods
have been proposed by resorting to different approaches,
e.g., representation learning [1], [2], [7], [28] and similarity
learning [3], [4]. More specifically, cross-modal representa-
tion learning methods [29], [30] aim at projecting different
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modalities into a latent common space wherein the repre-
sentations of distinct modalities can be directly compared
to calculate the similarities w.r.t. a distance metric, such as
cosine similarity, Euclidean distance, and so on. To exploit
existing knowledge in pre-trained embeddings, [6] pro-
posed a Collaborative Experts model (CE) which aggregates
the “general” and “specific” information from different pre-
trained experts for video-text retrieval. To encode videos
and texts into dense representations, [7] proposed a concept-
free Dual deep Encoding network (DE). To achieve video-
corpus moment retrieval, [31] presents a Retrieval and Lo-
calization Network with Contrastive Learning (ReLoCLNet)
by maximizing the mutual information between query and
candidates at both video- and frame-level. To exploit fine-
grained information to improve the discrimination, [1] pro-
posed a Stacked Cross Attention Network method (SCAN)
to excavate the full latent object-word alignments between
image regions and words. Like [1], [2] proposed Visual
Semantic Reasoning Network (VSRN) to enhance visual
representations for capturing the key objects and semantic
concepts of a scene via region relationship reasoning and
global semantic reasoning. To conduct fine-grained video-
text retrieval, [32] proposed a Hierarchical Graph Rea-
soning (HGR) model by performing video-text matching
into three hierarchical semantic levels to simultaneously
capture global events, local actions, and entities respec-
tively. Although these cross-modal representation learning
methods could achieve good performance, the handcrafted
similarity may further hinder performance improvements.
To overcome such a limitation, some works attempt to learn
parametric similarity functions in a data-driven way [3], [4],
[33]. In brief, [3] presented a Graph Structured Matching
Network (GSMN) to learn the fine-grained correspondence
via both node-level matching and structure-level matching.
In [4], a novel Similarity Graph Reasoning and Attention
Filtration (SGRAF) network is proposed to capture the
global- and local-region alignments between images and
texts, which consists of a Graph Convolution Neural Net-
work (GCNN) and a Similarity Attention Filtration (SAF)
module.

Different from these prior arts that assume the data
is with well-established pairs, this study aims to find a
solution for PMPs that are less touched before. As the false
positive pairs will be inevitably introduced when the data
is collected from the Internet, it is reasonable to believe
that this study could provide some novel insights to the
community of cross-modal retrieval.

2.2 Learning with Noisy Labels

To alleviate or even eliminate the influence of the errors
in annotations, a number of works have been carried out
during past years [12], [21], [34], [35]. In the scenario of clas-
sification, existing methods on noisy labels could be divided
into the following groups. The first group is the correction
paradigm which alleviates the noisy labels by rectifying the
incorrect annotations or the corresponding loss [11], [12],
[36]. The major limitation of these methods is that the extra
inputs are required to support the correction process, such
as the noise transition matrix [37], [38] or some extra clean
data [21], [34], [36], [39]. The second group of methods usu-
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Fig. 3: The framework of the proposed method. First, the visual and textual samples are fed into the corresponding
modality-specific networks fy and fr to extract the features fy(V) and fr(T), respectively. Second, a nonparametric
or parametric function g is conducted on the features to measure the cross-modal similarity between V and T. Then,
our Cross-Modal Contrastive Learning module (CMCL) is adopted to compute the cross-modal matching probability.
As the mismatched pairs will lead to inaccurate probability prediction, we propose a novel Complementary Contrastive
Learning (CCL) loss to solve this problem by only using the negative information (Y = 0) to optimize our model. For
positive information (Y = 1), our CCL will do nothing operation (NOP). Thanks to our complementary contrastive
learning paradigm, the proposed method could be robust against PMPs because the negative information is less possible

to be false than the positive one.

ally elaborately designs some training strategies to automat-
ically adapt the incorrect labels for robust learning, such as
MentorNet [14], [40] and Co-teaching [13]. The third group
of methods resorts to a variety of approaches to distinguish
the correct labels from the noisy ones so that the latter
could be discarded or rectified [17], [18], [19], [41]. Different
from the above three kinds of methods, the fourth group
of methods usually designs different loss functions which
are robust against the noisy labels, such as Mean Absolute
Error (MAE) [20], Generalized Cross-Entropy (GCE) [42],
Normalization [21], etc.

Although the aforementioned methods have achieved
huge success, almost all of them mainly focus on the errors
in category-level annotations, while ignoring the instance-
level mismatched pairs. In other words, they are specifi-
cally designed for classification and cannot be applied for
cross-modal retrieval. In addition, it will consume too large
memory and computational costs to convert cross-modal
retrieval to cross-modal classification, and even be impos-
sible for complex models [1], [3], [4] and strategies [18], [19].
Recently, to tackle instance-level errors, Huang et al. pro-
posed a Noisy Correspondence Rectifier method (NCR) to
adaptively predict the confidence coefficient of cross-modal
correspondence to divide the data into clean and noisy par-
titions in a co-teaching manner [43]. However, NCR needs
to simultaneously train two individual networks in the
manner of co-teaching, which will introduce extra training
overhead. Moreover, it is difficult to correctly predict the
confidence coefficient of cross-modal correspondence from
PMPs, especially with a high mismatching rate.

3 THE PROPOSED METHOD

In this section, we will elaborate on the influence of the PMP
problem in cross-modal retrieval, and then detail the pro-
posed RCL which consists of CMCL and CCL. More specif-
ically, Section 3.1 will first present the problem formulation
of image-text matching in presence of PMPs. After that,
Section 3.2 introduces the proposed cross-modal contrastive

learning module and Section 3.3 presents the details of our
complementary contrastive learning loss.

3.1

Cross-modal retrieval aims at retrieving the relevant in-
stances across different modalities for a given query. For-
mally, take the visual-text retrieval as an example, given a
visual-text dataset D = {V, T, Y} with partially mismatch-
ing pairs, we use V = {V,} ;V:“ , to denote the visual training

Problem Formulation

set with N, visual samples, 7 = {T; };V:t 1 to denote the tex-
tual training set with IV; text samples, V; and 7; to represent
the j-th visual and textual samples, respectively; In addi-
tion, we use the binary set Y = {Yji|j = 1,2,--- ,Ny;k =
1,2,---, N;} to indicate whether the corresponding image-
text pairs are matched or not, i.e., for the visual sample
V; and the textual sample Ty, Y;, = 1 if V; and T}, are
matched, and 0 otherwise. As data collection would mistak-
enly treat some negative pairs as positive, we aim to search
the most relevant samples from the textual/visual modality
for a given visual/textual query while being immune to the
influence of these false positive pairs or so-called partially
mismatched pairs.

3.2 Cross-modal Contrastive Learning

The key to cross-modal retrieval is measuring the similarity
between different modalities. To this end, most existing
methods attempt to learn two modality-specific networks
fv(-,0r) and fr(-, ©r) to project the corresponding visual
and textual modalities into a latent shared space, where O;
and O are the parameterized models for visual and textual
modalities, respectively. In the latent space, there exists a
mapping function S, = g(fv (V;), fr(Tk), ©4) to measure
the similarity between the visual feature fy/ (V) and textual
feature fr(T}), where ©, is the parameters of the similarity
function g. Note that, g could be a nonparametric [1], [2] or
parametric function [3], [4]. With the output of these net-
works, one could obtain retrieval results by simply ranking
the computed cross-modal similarities.
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Inspired by contrastive learning, we formulate the cross-
modal retrieval objective as an N-way retrieval using the
softmax criterion. The decision function is IV;-way searcher
h:V L5 RN for visual modality, similarly o : T 2, RN
for textual modality. Therefore, the cross-modal matching
probability of the textual sample T; w.r.t. the visual query
V; could be calculated by:

S

i€

where 7 is a temperature parameter [22], [44], and h(V;, T;)

is the j-th element of 1 (V;). Similarly, the matching proba-

bility of the visual sample V; w.r.t. the textual query T; is
obtained by:

M

Sji

pi" = p(Yj = 1Ty, V;) = h(T;, V) = 6731.»

Zl 167

where h(T;, V;) is the j-th element of h(T;). However, it is

expensive to compute the decision function - on the whole

training set. Following [22], [23], we explore Monte Carlo
approximation to estimate the softmax criterion by:

N
N, Sigp,
N Ze T

where Z; = Y et Y, {jx}_, are random indices sam-
pling a subset from the trammg set, and N could be the size
of a mini-batch. Thus, the cross-modal decision function h
could be estimated by:

@
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Similarly, h could be estimated by:
e T
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Since ]]\\’; is a constant, we could relax h(-) to the softmax
function. From the above, one could see that the goal of
cross-modal retrieval is learning the projection functions
fv, fr, and g to separate the positive and negative pairs
well. The cross-modal retrieval aims to learn a model that
minimizes the risk of decision function h:

R(h) :=Bv, )~ [L(R(V3), Yi)]
+ E(Ti7Y.i)ND [[’(h(TY)a YZ)] )
where E(-) is the expectation operator, and L(,-) is a loss
function. Given cross-modal pairs D = {V;, T;, V;} ¥, like
Equations (4) and (5) the risk could be approximated by:

xS let

=1

(6)

Yi) + L(W(T:),Y3)]. (7)
As in the usual classification case, some well-known loss
functions could be utilized to optimize the cross-modal
models. Especially, for the cross-entropy loss function, the

risk could be rewritten as:

R(h) M( Z logp + Z logp> 8
peEPY2!

pefPth

5

where P2 = {pP?|Y}; = 1;4,j = 1,--- ,N} and P}?” =
{]312”|YJZ = 1;4,j = 1,---,N} are the probability sets
of positive image-query-text and text-query-image pairs,
respectively. Obviously, Equation (8) is the contrastive loss
function [22], [23], which could maximize the agreement
between positive pairs while minimizing the mutual infor-
mation between negative pairs.

It should be pointed out that our CMCL is remarkably
different from the popular triplet losses [1], [2], [45] in
the given aspects. To be specific, the triplet losses aim to
enforce the similarity gaps between the positive pair and
negative pair to be larger than a given margin, whereas
CMCL aims at maximizing the similarity gap between the
positive pair and negative pairs as large as possible. Such
a difference will bring two benefits which are helpful in
alleviating the overfitting of our model to the false positive.
On the one hand, our method does not involve specifying
the margin, thus avoiding the labor-intensive efforts for the
parameter selection and the corresponding overfitting issue.
On the other hand, unlike existing methods, we compute
each term of the loss by using all instead of one specific
negative sample for one given anchor (see Section 4.6 for
more detailed discussions).

Such a difference could improve the robustness against
mismatched pairs and thus alleviate the overfitting to the
false positive pairs since the influence of the mismatched
pairs will be weakened.

3.3 Complementary Contrastive Learning

Despite the benefits brought by CMCL, it will overfit the
false positive pairs as shown in our ablation study (Sec-
tion 4.6). Specifically, like cross-entropy loss functions [21],
[23], [44], Equation (8) will focus on the optimization of the
hard samples that will lead to a relatively large loss. As the
false positive pairs will mislead Equation (8) to the wrong
optimization direction, thus degrading the performance.

Inspired by complementary learning [24], [25], we em-
ploy complementary instead of positive information to pro-
vide more accurate supervision. However, the complemen-
tary supervision is too weak to train the models, thus it
will induce an underfitting problem as the aforementioned.
Motivated by the Brownian motion, we employ multiple
negatives to enhance the supervision information of com-
plementary learning to address the problem. Our method is
derived from the following theorem which allows the unbi-
ased estimation of the retrieval risk from complementarily
labeled patterns.

Theorem 1. For any ordinary distribution D and complementary
distribution D related by Equation (6) with decision function h,
and loss L, we have

R(h; £) = R(h: L) = E(y 1,90 {ﬁ( wn
+Z((T),Y)),
for the complementary loss
£0x), %) = -2 LS g
vey (10)

+ Z L(h(X)

ygY
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where X € {V, T}, R is the risk for complementary labels, L is
complementary loss, Y is a set of complementary labels indicating
multiple negatives, Y ;; = 1 indicates that the i-th visual and j-th
textual samples are unmatched, and |Y | is the size of the set.

By using Theorem 1 and Equation (3), we could rewrite
the retrieval risk as:

N
£) =3 aEs, [L(h(V
k=1

where g, = P(? = k). Given the dataset with D =
{(Vi,T;,Y4;)}j=1, we could empirically estimate g, by
lv"l , where |X| denotes the size of the set X. With Equa-
t10n (11), we can further obtain the following empirical
approximation of the unbiased risk estimator introduced in
Theorem 1:

)7Y.k)+Z(h(T),Yk.)} 1)

COEESS ( > Z((ViT), V)
k=1 \T;cTx (12)
+ L(h(T, Vi), Yir) |+
VeV,
where V, = {Vi|Yix = 1;i = 1,--- N} and T =

{T,|Yy; = 1;j = 1,---, N} denote the visual and textual
samples labeled as unmatching with the k-th textual and vi-
sual ones, respectively. Inspired by [20], [25], we employ the
noise-tolerate Mean Absolute Error (MAE) to approximate
the risk. Specifically, by utilizing MAE in Equation (12), we

could obtain
N
“a
k=1

+ }L(Tk-, Vz)
ViEVk-

> h(Vi,Ty)
T;€Tx (13)

+Z

where a = %, Z is a constant, and C' = V| = |T | is
the number of selected negatives. Minimizing Equation (13)
is equivalent to minimizing the following loss function:

—=v2t —t2v —=v2t

where Pj, = Pk U Pk , P o= ol Y = Lio=
1,---,N} and Pk {pt2v |Y1k =14 = 1,---,N}
are the probability sets of complementary image-query-
text and text-query-image pairs, respectively. Equation (14)
is theoretically robust against PMPs. However, one could
see that L, equally treats each point to make it more
robust against noisy labels. However, without focusing on
more challenging samples, its noise-tolerate property would
make the DNN models difficult to train on complicated
datasets [42]. To address this problem, we formulate the
inequations of z < —log(l — z), z < e~(-2) 4 <
é (1-(1—=2)7),and x < tan(z) to transform Equation (14)
as the following upper bounds of MAE. As a result, the

(14)

mae =

Z\H

6

model will focus more on the hard samples while preserving
the robustness.

1
Liog == > > log(1-p), (15)
k=1 peP,
N
1
Lop=7> D> ¢ "7V (16)
k=1pcPp,
1 & 1
Egcczﬁz Z 6(17(17]9)(1)’ (17)
k=1peP,
N
1
Lian = i Z Z tan(p), (18)
k=1 pEP

where ¢ € (0, 1]. By minimizing these complementary loss
functions, we could achieve robust cross-modal retrieval.
Specifically, Equation (15) is an instance-level variant of
negative learning loss [17] with multiple negatives. Equa-
tion (17) is an instance-level complementary variant of
Generalized Cross Entropy (GCE) [42]. The basic idea of
the above objective functions is employing complementary
information to alleviate the influence of mismatched pairs.
In brief, complementary contrastive learning will specify an
instance to which the given input does not belong.

One major advantage of complementary learning is that
collecting the complementary labels would be less labori-
ous than the ordinary labels because it is unnecessary to
carefully seek the correct class from a long list of candidate
classes. Although complementary learning could avoid the
exhaustive accurate data annotation, it will suffer from the
following limitations which hinder its application in cross-
modal retrieval. First, the standard complementary learning
is proposed for multi-class classification, and it is intractable
or even infeasible to apply the idea to the retrieval task due
to the significant difference between the two tasks. Second,
although complementary learning shows potential in solv-
ing the PMP problem, simply using the idea will underfit
the model to the latent correct distribution of data, thus
making it difficult to converge. More specifically, on the one
hand, the complementary labels are less informative than
the positive ones, thus the convergence of the model is hard
to guarantee under such weak supervision. On the other
hand, almost all existing complementary learning methods
usually construct a complementary label for a given sample,
directly adopting the methods for retrieval will result in
non-convergence of the model as elaborated in Sections 1
and 4.6.

To address the above instability issue, we propose to use
all negative pairs available within the given batch as formu-
lated in Equations (15)—(18), i.e., |Y| = N, — 1, where N, is
the size of a mini-batch. The idea comes from the study on
Brownian motion. In brief, if only one negative relationship
is considered like the standard complementary learning, the
anchors will be affected by the negatives in a random way,
thus making it difficult in achieving convergence. By simul-
taneously considering all available negatives, in contrast,
one could achieve a steady-state approximation. Notably,
although our experimental results will empirically show the
stability of such a dynamic system, it is daunting to prove its



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

convergence in theory since the random motion of massive
particles is involved in essence.

4 EXPERIMENTS

In this section, to evaluate the effectiveness of the pro-
posed method, we conduct extensive experiments with the
comparisons of state-of-the-art methods w.r.t. two cross-
modal retrieval tasks, i.e., image-text matching, and video-
text retrieval. For a comprehensive comparison, our experi-
ments are conducted on three image-text and two video-text
databases.

TABLE 1: General statistics of all datasets in the exper-
iments. Ny, Nyq, and N are the number of training,
validation, and testing sets in the corresponding dataset,
respectively.

Dataset Modality Ntr Noua Nte

MSCOCO o8t A 200 23000

Flickr30K IT‘;‘;ge 122:888 éﬁggg é:88(0)

CC152K I{;ﬁ‘tge 128;888 %:888 %:88(0)

MSVD ‘T’Qi‘f ° 451452(4) 8,%88 542;(0)

MSRVIT 1S 3000 opi0 59500
4.1 Datasets

In this section, we will briefly introduce the used five
datasets, i.e., MS-COCO [48], Flickr30K [49], CC152K [10],
MSVD [50], and MSR-VTT [51]. For clarity, we summarize
some statistics of these datasets in Table 1. In brief,

e MS-COCO [48] is a large-scale cross-modal dataset,
which consists of 123,287 images each of which is
described by five sentences. Following [1], in our
experiments, the training set consists of 113,287
images and 566,435 sentences, the validation set
contains 5,000 images and 25,000 sentences, and
the testing set consists of 5,000 images and 25,000
sentences.

o Flickr30K [49] consists of 31,000 images with five
text annotations for each image. Like MS-COCO, we
also use the default splits of [1], i.e., the training
set includes 29,000 images and 145,000 texts, the
validation set contains 1,000 images and 5,000 texts,
and the testing set consists of 1,000 images and 5,000
texts.

o CC152K [10] is a subset of Conceptual Captions [10]
that comprises 3.3M image-text pairs wherein each
image is crawled from the Internet with a text de-
scription. In our experiments, we randomly select
150,000, 1,000, and 1,000 pairs from the training,
validation, and testing sets.

e MSVD [50] comprises 1,970 videos sourced from
YouTube, and each video is captioned by around
40 sentences/tags (80,000 English text descriptions
in total). In our evaluations, the standard partitions
used in [6] are adopted, i.e., 1,200 videos for training,
100 videos for validation, and 670 videos for testing.
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e MSR-VTT [51] is a large-scale video-caption dataset,
which contains about 200,000 unique video-caption
pairs including 10,000 web video clips and 200,000
texts. In the dataset, each video is captioned with
20 different description sentences. We use the official
data partitions for experiments, i.e., 6,513 videos for
training, 497 videos for validation, and the remaining
2,990 videos for testing.

4.2 Experiment Settings

Our Robust Cross-modal Learning (RCL) is a general frame-
work that could extend most of the existing cross-modal
matching approaches to enjoy robustness against PMPs by
simply replacing the triplet loss with our loss. To demon-
strate the effectiveness and generalization of RCL, we apply
it to seven different cross-modal retrieval methods (i.e.,
VSRN [2], GSMN [3], IMRAM (text) [46], SAF [4], SGR [4],
DE [7], and CE [6]). Specifically, the visual regions/frames
and sentences are fed into the visual network fy(-,Ov)
and the textual network fr(-,Or), respectively. To cal-
culate the cross-modal similarities, the similarity function
g(fv(V), fr(T),0,) is adopted to measure the similarity
score between visual feature fi(V) and textual feature
fr(T), where g could be nonparametric or parametric. For
fair comparisons, our variants adopt the same network
structure and setting as the original methods. The tempera-
ture 7 is set as 0.05. For convenience, our method uses Ljog
unless otherwise specified.

Besides the comparisons with the above seven methods,
we also investigate the performance of SCAN (i-t AVG) [1]
and PolyLoss [47] as baselines. For a comprehensive per-
formance evaluation, we adopt Recall@K (R@K, higher is
better) for different values of K and Median rank (Med r,
lower is better) to measure the performance for cross-modal
retrieval. In brief, R@K is the percentage of tested queries for
which at least one correct item is among the top K ranking
results [47], [52]. Med r is the median rank of the first correct
item in the retrieved results [7]. Following [3], [4], we report
the corresponding results on the testing set when the model
achieves the best performance on the validation set in terms
of the sum of the evaluation scores.

4.3 Comparisons with State of the Arts

In this section, we conduct comparisons with nine cross-
modal retrieval approaches on five benchmark datasets to
verify the effectiveness of the proposed method. To com-
prehensively investigate the robustness of our RCL against
PMPs, we carry out experiment under four different settings
with the synthesized false positive pairs on MS-COCO [48],
Flickr30K [49], MSVD [50], and MSR-VTT [51], ie., the
mismatching rates increases from 0.2 to 0.8 with an interval
of 0.2. To be specific, we randomly select a given propor-
tion of visual samples and then randomly permute their
all textual counterparts, which is more challenging than
the noise injection approach used in [43]. In brief, in [43],
although one image may have mismatched texts, it is still
likely to have some correctly matched texts, which will lead
to semantic leaking, i.e., the vast majority of images still have
one or more correctly matched texts with similar semantics,
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TABLE 2: Image-text matching with different mismatching rates (MRate) on MS-COCO 1K and Flickr30K.

MS-COCO Flickr30K

MRate | Method Image-to-Text Text-to-Image Sum Image-to-Text Text-to-Image Sum

R@l R@5 R@l0 | R@l R@5 R@10 R@l R@5 R@l0 | R@l R@5 R@l0
SCAN [1] 727 948 984|588 884 948 | 5079 | 674 903 958 | 48.6 777 852 | 465.0
VSRN [2] 762 948 982 | 628 89.7 951 | 5168 | 71.3 90.6 96.0 | 547 81.8 882 | 482.6
GSMN [3] 761 956 983|604 887 950 5141|714 920 961|539 79.7 871 | 4802
IMRAM [46] | 740 956 984 | 606 889 946 | 5121 | 688 91.6 96.0| 53.0 79.0 87.1 | 4755
SAF [4] 76.1 954 983|618 894 953 | 5163 | 737 933 963 | 56.1 815 88.0 | 4889
0 SGR [4] 780 958 982|614 893 954 | 5181|752 933 96.6| 562 81.0 86.5| 488.8
SGRAF [4] 796 962 985|632 907 96.1| 5243|778 941 974|585 83.0 88.8 | 499.6
NCR [43] 787 958 985|633 904 958 | 5225|773 940 975|596 844 89.9| 502.7
RCL-SAF 785 961 986 | 627 900 954 | 5213|767 937 973|562 826 888 | 4953
RCL-SGR 782 962 984|629 900 957 | 5214|775 947 974 | 588 833 889 | 500.6
RCL-SGRAF | 804 964 98.7| 643 90.8 96.0| 526.6 | 79.9 961 978 | 611 854 90.3 | 510.6
SCAN [1] 622 90.0 96.1| 462 80.8 89.2| 4645|585 810 90.8| 355 650 752 | 406.0
PolyLoss [47] | 68.4 923 969 | 444 792 882 | 4694 | 581 838 90.6 | 39.6 683 783 | 418.7
VSRN [2] 61.8 873 929 | 50.0 803 883 | 460.6 | 33.4 595 713 | 25.0 47.6 58.6 | 2954
GSMN [3] 65.8 917 96.6| 51.6 83.0 888 | 4775 | 546 812 878|322 610 714 | 3882
IMRAM [46] | 699 93.6 974 | 559 844 89.6| 4908 | 591 854 919 | 445 714 794 | 4317
0.2 SAF [4] 715 940 975|578 864 919 499.1 | 62.8 887 939|497 736 78.0 | 446.7
' SGR [4] 257 588 751|235 589 751 | 3171|559 815 889|402 668 753 | 408.6
RCL-VSRN 708 934 97.6| 572 869 93.7| 499.6 | 59.6 837 89.7 | 442 729 81.6 | 4317
RCL-GSMN | 76.8 952 982 | 60.4 871 924 | 510.1 | 66.6 875 924|459 73.6 814 | 4474
RCL-IMRAM | 741 949 979 | 589 864 92.6 | 504.8 | 64.0 89.5 94.7 | 459 73.8 82.5| 450.4
RCL-SAF 771 955 982 | 61.0 88.8 94.6| 5152 | 72.0 91.7 958 | 53.6 79.9 86.7 | 479.7
RCL-SGR 77.0 955 98.1| 61.3 88.8 94.8 | 5155 | 74.2 91.8 96.9 | 55.6 81.2 87.5 | 487.2
SCAN [1] 429 746 851|242 526 638 | 3432|260 574 718|178 405 51.4 | 2649
PolyLoss [47] | 404 753 859 | 311 647 779 | 323.0| 304 61.7 733|197 440 55.6 | 284.7
VSRN [2] 298 621 766|171 461 6031|2920 26 103 148| 3.0 93 150| 550
GSMN [3] 183 433 55.0| 13.0 394 549 | 2239|310 620 741|197 443 563 | 2874
IMRAM [46] | 51.8 824 909 | 384 703 789 | 4127 | 449 732 826|316 563 656 | 354.2
04 SAF [4] 135 438 482|160 390 508 | 211.3| 74 196 267 | 44 120 170 871
’ SGR [4] 13 37 63| 05 25 41| 184 | 41 166 241 | 41 132 197 | 818
RCL-VSRN 67.7 919 964 | 533 843 92.0| 4856 | 524 79.8 87.3| 381 67.0 76.7| 401.3
RCL-GSMN 745 944 97.5| 582 851 91.0| 500.7 | 59.0 84.4 90.9 | 41.7 65.6 72.9 | 414.5
RCL-IMRAM | 73.7 945 979 | 56.8 83.8 89.8| 496.5| 59.2 84.8 919 | 422 70.6 80.0 | 428.7
RCL-SAF 748 948 97.8| 59.0 871 93.9| 507.4 | 68.8 89.8 950 | 51.0 76.7 84.8 | 466.1
RCL-SGR 739 949 979 | 59.0 874 939 | 507.0 | 71.3 911 953 | 514 78.0 85.2 | 472.3
SCAN [1] 299 609 748 09 24 41| 1730| 13.6 365 503 | 48 136 198 | 138.6
PolyLoss [47] | 31.3 665 787|221 493 59.7| 3076 | 180 420 555| 34 99 151 | 1439
VSRN [2] 116 340 475| 46 164 259 | 1400| 08 25 53| 12 42 6.9 | 209
GSMN [3] 47 147 204| 29 99 143| 669| 00 04 09| 01 05 1.0 2.9
IMRAM [46] | 182 516 68.0| 179 436 54.6| 2539 | 164 382 509 | 75 192 253 | 1575
06 SAF [4] 01 05 07| 08 35 63| 119| 01 15 28| 04 12 2.3 8.3
' SGR [4] 01 0.6 10| 01 05 1.1 34| 15 66 96| 03 23 42| 245
RCL-VSRN 619 883 949 | 460 79.1 88.6| 458.8 | 42.8 709 813 | 29.7 56.9 68.0 | 349.6
RCL-GSMN 699 927 97.1| 54.8 83.7 909 | 489.1 | 543 785 858 | 38.2 63.0 723 | 392.1
RCL-IMRAM | 68.3 92.0 96.5| 53.8 823 89.6 | 4825 | 53.9 80.4 87.6 | 375 64.8 74.0 | 398.2
RCL-SAF 701 931 96.8| 545 844 919 | 490.8 | 63.9 848 917 | 43.0 712 79.4 | 434.0
RCL-SGR 714 932 971 | 554 84.7 923 | 494.1| 623 863 929 | 451 713 80.2 | 438.1
SCAN [1] 102 299 420| 01 07 11| 84.0| 11 50 871 04 13 23| 188
PolyLoss [47] | 112 335 483 | 01 06 19| 9.6 | 22 88 130| 01 07 18| 266
VSRN [2] 14 53 88| 07 28 54| 244| 03 14 21| 06 20 3.3 9.7
GSMN [3] 15 59 107| 15 59 100| 355| 01 05 08| 01 05 1.0 3.0
IMRAM [46] 1.3 50 83| 02 06 13| 167 31 97 521 03 09 19| 311
0.8 SAF [4] 02 08 14| 01 05 1.0 40| 00 08 12| 01 05 1.1 3.7
' SGR [4] 02 06 10| 01 05 1.0 34| 02 03 05| 01 06 1.0 2.7
RCL-VSRN 498 79.7 889|338 681 809 | 401.2| 123 32.0 415| 83 23.7 33.8| 151.6
RCL-GSMN 603 872 939 | 453 76.1 854 | 448.2 | 346 615 719 | 238 47.0 57.0 | 2958
RCL-IMRAM | 60.1 86.6 93.3| 446 739 829 | 4414 | 39.5 663 76.0 | 26.7 521 622 | 322.8
RCL-SAF 629 893 949 | 471 779 874 | 459.5| 45.0 72.8 80.8| 30.7 56.5 67.3 | 353.1
RCL-SGR 63.2 893 952 | 47.6 78.7 88.0 | 462.0 | 471 705 794 | 30.3 56.1 66.3 | 349.7

especially for MS-COCO and Flickr30. However, in real- correctly, all the surrounding texts will be mismatched with
world applications, if the images are inserted into texts in-  the images, e.g., the Conceptual Captions dataset. Therefore,
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TABLE 3: Video-text retrieval with different mismatching rates (MRate) on MSVD and MSR-VTT.

MSVD MSR-VTT
MRate | Method Video-to-Text Text-to-Video Video-to-Text Text-to-Video

R@1 R@5 R@10 Med r] |[R@1 R@5 R@10 Med r] |[R@1 R@5 R@10 Med r| |[R@1 R@5 R@I0 Med r|

DE [7] 74 235 34.0 28.0/10.3 219 284 50.0| 49 154 23.0 69.0] 03 14 27 1314.0

02 RCL-DE|10.4 30.0 42.2 16.0| 11.2 27.0 354 33.0/ 6.6 19.3 28.5 40.0 04 23 3.9 756.0
’ CE[6] [14.3 38.7 538 9.0[16.7 36.7 472 13.0] 69 22.0 323 26.0] 9.6 31.0 445 14.0
RCL-CE | 18.8 46.7 61.4 6.0| 25.8 52.8 63.7 4.5|11.2 30.8 42.5 16.0|17.7 44.2 57.2 7.0

DE [7] 44 154 240 57.0] 6.7 154 20.3 92.0] 28 99 155 160.0] 0.2 09 22 3318.0

0.4 RCL-DE| 7.4 23.6 35.2 24.0(10.3 21.5 29.4 59.0| 4.9 15.8 24.2 490 04 1.7 3.2 9920
’ CE[6] 6.7 22.0 34.0 21.0] 81 22.8 31.0 355 4.7 154 236 470 7.6 21.8 321 26.75
RCL-CE | 12.7 35.4 49.8 11.0| 18.7 43.4 52.8 8.0/ 89 25.5 36.2 23.0(13.7 37.4 50.6 10.0

DE [7] 21 86 14.0 98.0 2.8 82 109 2220/ 0.6 3.0 56 2480 0.1 03 0.6 4719.0

06 RCL-DE| 4.3 15.6 23.7 49.0f 7.2 131 16.9 159.0| 3.5 12.0 18.8 81.0| 04 14 2.2 1486.0
’ CE[6] 44 139 21.6 540 2.8 11.8 151 1745 23 8.6 138 123.0] 27 99 153 110.0
RCL-CE| 7.8 23.3 34.2 23.0|12.4 26.7 35.2 26.0/ 6.2 19.0 27.9 40.0/ 8.5 25.2 36.4 20.0

DE [7] 04 26 56 2020 1.2 25 40 960.0] 0.0 0.2 03 1465.0] 0.0 0.0 0.0 14189.0

0.8 RCL-DE| 11 5.8 103 142.0| 1.5 3.9 78 159.0| 1.7 6.2 103 211.0| 0.1 0.6 1.0 4939.0
’ CE [6] 1.0 54 95 120.0] 1.2 51 79 460.0] 0.8 32 53 4720 0.7 27 48 10195
RCL-CE| 24 85 141 97.0| 2.8 7.6 11.5 260.25| 23 83 133 146.0/ 2.5 91 14.5 114.75

the PMPs studied in the paper are more challenging than
noisy correspondence [43], which is demonstrated by the
following experiments.

4.3.1 Image-Text Matching with Synthesized Noises

To verify the robustness of RCL against synthesized mis-
matched pairs, we carry out experiments on two image-
text datasets, i.e., Flickr30K, and MS-COCO. As shown in
Table 2, one could see that RCL could remarkably improve
the robustness of existing methods, and all extensions with
RCL achieve promising performance on the two benchmark
datasets. More specifically,

e The PMPs will corrupt the performance of the cross-
modal matching modal. With more false positive
pairs, the performance of all tested methods will be
degraded.

e On the larger-size dataset (i.e., MS-COCO) and the
mismatching rate is small (e.g., 20%), some of the
baselines (e.g., SAF) could achieve competitive per-
formance, which could attribute to that massive
training data would enhance the robustness of the
model. However, with more false positives, simply
increasing the amount of data cannot benefit stronger
robustness against PMPs.

e When the mismatching rate increases from 0.2 to
0.6, the extensions with RCL slightly decrease their
performance. For example, R@1 of RCL-SAF on MS-
COCO decreases from 77.1% to 70.1%, whereas the
baseline SAF decreases from 71.5% to 0.1%.

e Under Ilower MRate, compared with non-
parameterized similarity metrics (e.g., SCAN,
VSRN, IMRAM, and PolyLoss), the parameterized
similarity metrics (e.g., GSMN, SAF, and SGR) could
lead to better performance despite the changes in
dataset and mismatching rate. The possible reason
is that the adaptive similarity metric will enhance
the fitting ability of the methods even for noisy data.
However, the superior fitting ability will induce
models partial to PMPs under higher MRate, leading
to performance degradation.

e Our RCL is remarkably superior to its counterparts
for image-text matching, especially, when the mis-
matching rate is high. For example, on the MS-
COCO dataset with 80% false positives, our RCL
can improve VSRN [2] from 1.4% to 49.8% (R@1)
for image-to-text matching and from 0.7% to 33.8%
(R@1) for text-to-image matching. It also improves
SGR [4] from 0.2% to 63.2% (R@1) for image-to-text
matching and from 0.1% to 47.6% (R@1) for text-to-
image.

4.3.2 Video-Text Retrieval with Synthesized Noises

In addition to the evaluation for image-text matching, we
also conduct experiments for video-text matching on two
benchmark datasets. Similarly, we synthesize the false posi-
tive pairs for the MSVD [50] and MSR-VTT [51] datasets. As
shown in Table 3, one could conclude that RCL remarkably
boosts the robustness of the baselines. More specifically,

o Like the observations on image-text matching, when
the mismatched pairs become dominant in training
data, the video-text matching performance of all
baselines will deteriorate dramatically.

e The extensions with RCL remarkably outperform all
the baselines under all settings. For example, on
the MSVD dataset with 20% noises, RCL improves
DE by 40.5% (R@1) for video-to-text retrieval and
8.7% (R@1) for text-to-video matching, and improves
CE [6] by 31.5% (R@1) for video-to-text matching and
54.5% (R@1) for text-to-video matching, respectively.
Furthermore, on the MSR-VTT dataset with 20%
noises, RCL improves DE [7] by 34.7% (R@1) for
video-to-text retrieval and 33.3% (R@1) for text-to-
video matching, and improves CE [6] by 62.3% (R@1)
for video-to-text matching and 84.4% (R@1) for text-
to-video retrieval, respectively.

4.3.3 Image-Text Matching with Real Noises

Besides the above experiments on the synthesized noises,
we also conduct comparisons on the dataset which is with
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Fig. 4: Comparison of robustness against PMPs with the mismatching rate of 0.6. This figure shows the pairwise similarity
distributions of TP-FP (true positive pairs vs. false positive pairs on the training set of MS-COCO), TN-EN (true negative
pairs vs. false negative pairs on the training set of MS-COCO), and PP-NP (positive pairs vs. negative pairs on the validation
set of MS-COCO) calculated by TR-HN, TR, CL, NL, and CCL, respectively.

TABLE 4: Image-text matching on CC152K.

Image-to-Text Text-to-Image
Method Rl @5 R@T0 | Rl - RG5 RaT0
SCANTI] 305 553 653 | 269 530 647
PolyLoss [47] | 31.0 578 69.0 | 300 565  67.9
VSRN [2] 24 605 716 | 308 617 709
IMRAM [46] | 27.8 524 609 | 292 515 612
SAF [4] 25 595 700 | 325 607 687
SGR [4] 145 355 489 | 137 361 479
SGRAF [4] 325 595 700 | 325 607 687
NCR* [43] 369 624 707 | 346 614 710
NCR [43] 395 645 735 | 403 646 732
RCL-VSRN | 344 631 738 | 344 619 736
RCL-IMRAM | 329 605 695 | 349 598 687
RCL-SAF 375 630 714 | 378 624 724
RCL-SGR 383 630 704 | 392 632 723
RCL-SGRAF | 417 660 736 | 416 664 751

* denotes the results of one single model for NCR.

real mismatched pairs. To this end, we adopt the CC152K
dataset which is collected from the Internet and contains
some unknown mismatched pairs. As shown in Tables 2
and 4, one could see that the extensions with RCL are
remarkably superior to the baselines under real noises, i.e.,
without synthesized noises. The promising performance of
our method could be attributed to the that our CCL loss
adopts only the negative pairs to avoid using false infor-
mation, thus embracing better performance. Specifically, in
Table 4, RCL improves VSRN [2] by 6.2% (R@1) for image-
to-text matching and 11.7% (R@1) for text-to-image match-
ing, IMRAM [46] by 18.3% (R@1) for image-to-text matching
and 19.5% (R@1) for text-to-image matching, and SGR [4] by
164.1% (R@1) for image-to-text matching and 186.1% (R@1)

for text-to-image matching. The experiments verify that our
RCL could provide an effective solution to utilize massive
and economical data collected from the Internet while being
immune to possible mismatched pairs.

4.4 Comparison with Rectifying Method

In this section, we compare our RCL with the most related
method NCR [43] to investigate the effectiveness and effi-
ciency of the proposed learning paradigm. First, NCR re-
quires simultaneously training two individual cross-modal
models with GMM in a co-teaching manner, which will
take a relatively high computational cost. In contrast, our
method does not introduce extra training costs into the orig-
inal cross-modal method, thus embracing higher efficiency.
Second, we conduct some comparisons with NCR in Table 5.
From the experiments, one could see that both NCR and our
RCL achieve comparable retrieval performance in low mis-
matching rates (e.g., 0.2 and 0.4). However, the performance
of NCR will fast degrade with high mismatching rates (e.g.,
0.6 and 0.8) because NCR cannot correctly distinguish true
positives from false positives when the PMPs dominate in
the training data. Furthermore, one could find that NCR
achieves worse performance under PMPs comparing the
results reported in [43], which demonstrates that our PMP
injection approach is more challenging than that used in
NCR.

4.5

In this section, we investigate the effectiveness of the vari-
ants of our framework with different upper bounds, i.e.,

Image-Text Matching with Different Upper Bounds
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TABLE 5: Comparison with NCR [43] under different mismatching rates (MRate) on MS-COCO and Flickr30K.

MS-COCO Flickr30K
MRate | Method Image-to-Text [ Text-to-Image Image-to-Text [ Text-to-Image
rSum rSum
Rel R@5 R@l0 R@l R@5 R@l0 R@l R@5 R@l0 R@l R@5 R@l0
NCR* [43] 737 945 977 583 887 94.0 | 5069 | 69.9  92.0 954 526 794 86.8 | 476.1
RCL-SAF 771 955 98.2 61.0 88.8 946 | 5152 | 72.0 917 95.8 53.6 79.9 86.7 | 479.7
0.2 RCL-SGR 77.0  95.5 98.1 613 88.8 94.8 | 5155 | 742 918 969 556 81.2 87.5 | 487.2
NCR [43] 76.6  95.6 982  60.8 888 95.0 | 5150 | 735 932 96.6 569 824 88.5 | 491.1
RCL-SGRAF | 789 96.0 984 628 89.9 954 | 5214 | 759 945 97.3 579 826 88.6 | 496.8
NCR* [43] 71.7 939 975 56.7  86.8 94.0 | 500.6 | 61.6 883 928 469 745 82.3 | 4464
RCL-SAF 74.8  94.8 97.8 59.0 87.1 939 | 507.4 | 68.8 89.8 95.0 51.0 76.7 84.8 | 466.1
0.4 RCL-SGR 739 949 979 59.0 874 939 | 507.0 | 71.3 911 953 514 78.0 85.2 | 4723
NCR [43] 747 94.6 98.0 59.6 881 947 | 509.7 | 68.1 89.6 948 514 784 84.8 | 467.1
RCL-SGRAF | 77.0 95.5 983 612 885 948 | 5153 | 72.7 927 96.1 548 80.0 87.1 | 4834
NCR* [43] 0.1 0.3 0.4 0.1 0.5 1.0 24 | 137 347 469 101 274 384 | 171.2
RCL-SAF 701 93.1 96.8 545 844 91.9 | 490.8 | 63.9 84.8 91.7 43.0 712 79.4 | 434.0
0.6 RCL-SGR 714 93.2 97.1 554  84.7 923 | 4941 | 623 863 929 451 713 80.2 | 438.1
NCR [43] 0.1 0.3 0.4 0.1 0.5 1.0 24 | 139 377 50.5 11.0 301 41.4 | 184.6
RCL-SGRAF | 740 94.3 97.5 57.6 864 93.5 | 503.3 | 67.7 89.1 93.6 48.0 749 83.3 | 456.6
NCR* [43] 0.1 0.3 0.4 0.1 0.5 1.0 24 0.9 2.7 47 0.2 0.8 1.6 10.9
RCL-SAF 629 89.3 949 471 779 87.4 | 459.5 | 450 728 80.8 30.7 56.5 67.3 | 353.1
0.8 RCL-SGR 63.2 89.3 95.2 47.6 787 88.0 | 462.0 | 47.1 705 794 303 56.1 66.3 | 349.7
NCR [43] 0.1 0.3 0.4 0.1 0.5 1.0 2.4 15 6.2 9.9 0.3 1.0 2.1 21.0
RCL-SGRAF | 674 90.8 96.0 50.6 81.0 90.1 | 4759 | 51.7 758 844 345 612 70.7 | 378.3
* denotes the results of one single model for NCR.
different loss functions, as shown in Table 6. From the exper- 80 €0
imental results, one could see that the vanilla £, cannot 0 50
achieve satisfactory performance, due to the underfitting 60 20
issue faced by complementary learning. Thanks to the pro-  _*° -
posed strategy of multiple negatives, £,c achieves compa- ~ £4 Qa0
rable results. However, MAE treats each point equally and %0 —cor 20 .
. . —CCL
ignores hard samples, thus leading to performance degra- 20 - . —at
. . . . NL
dation. To address such a problem, we optimize different 10 TRHN TR-HN
upper bounds of MAE to improve the performance while O ook Aok 6ok BoK PR TTEEa—-

preserving robustness. From the experimental results, one
could find that all upper bounds could improve L,.e by
1.7 ~ 3.5 in terms of the overall scores (i.e., rfSum).

TABLE 6: Comparison of SGR [4] with different presented
loss functions under the mismatching rates (MRate) of 0.6
on MS-COCO.

Loss Image-to-Text Text-to-Image Sum
R@l R@5 Rel0 | R@el R@5 Re@10

L | 01 0.5 1.0 0.1 0.5 1.0 3.2

Lmae | 678 933 972 554 858 929 492.4
Lexp | 720 929 972 549 850 927 494.7
Liog 714 932 971 554 847 923 494.1
Lgce 72.6 937 973 554 846 921 495.7
Ltan 722 937 973 555 847 925 495.9

4.6 Ablation Study

To comprehensively investigate the effectiveness of our
CCL, we carry out some ablation studies by using the
following five loss functions:

o TR [45] is the hinge-based triplet ranking loss.

o TR-HN [29] is the widely-used hinge-based triplet
ranking loss with hard negatives.

e CL [23] is the contrastive learning loss, i.c., Equa-
tion (8).

e NL [17] is the negative learning (aka complementary
learning) loss.

Iteration Iteration

(a) Image-to-Text (b) Text-to-Image

Fig. 5: Performance of different loss functions in SGR in
terms of R@1 scores. The evaluation is conducted on the
validation set of MS-COCO with MRate=0.6.

Besides the choice in the loss function, the experiments
are conducted by training the same settings including but
not limited to network structure, hyper-parameters, and
optimizer. The ablation study is carried out on MS-COCO
and Flickr30K in terms of image-text matching. As demon-
strated in Table 7, Figs. 4 and 5, one could see that TR-
HN overfits the false positives because it focuses on the
hardest pairs. With the soft relaxation, TR has achieved
better performance than TR-HN because it could avoid
overfitting PMPs. Different from TR-HN, NL only utilizes
negative labels. However, as the negative labels are less
informative, NL will encounter the underfitting issue as
elaborated in Sections 1 and 3. In a contrastive learning
manner, although CL could be immune to the false positive
in the early training stage, it also overfits the uncorrected su-
pervision with further training, thus leading to performance
degradation. Fortunately, our CCL could simultaneously
address the overfitting and underfitting issues as claimed
and achieve the best performance.
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TABLE 7: Image-text matching with the mismatching rate of 0.6 on MS-COCO 1K and Flickr30K.

MS-COCO Flickr30K
Method | Loss Image-to-Text Text-to-Image Sum Image-to-Text Text-to-Image Sum
R@l R@5 R@l0 | R@l R@5 R@l0 Re@l R@5 Rel0 | R@l R@5 Rel0
TR 287 617 774 | 260 59.1 748 | 327.7 | 284 516 642 | 161 379 48.9 | 2471
TR-HN 0.5 13 24 14 54 8.8 19.8 0.1 12 2.1 0.5 11 2.1 7.1
SAF NL 0.1 0.9 13 0.1 0.5 1.0 3.9 0.0 0.5 13 0.1 0.5 1.0 34
CL 63.0 921 96.7 | 520 835 915 | 4838 | 538 813 884 | 39.6 66.6 75.7 | 405.4
CCL 701 93.1 96.8 | 54.5 844 91.9 | 4908 | 645 86.6 91.6 | 439 70.0 79.2 | 435.8
TR 337 669 80.3 | 262 59.1 732 | 339.4 | 379 647 750 | 241 477 58.3 | 307.7
TR-HN 0.1 0.6 11 0.1 0.5 1.0 3.4 0.3 14 3.1 0.2 1.0 1.8 7.8
SGR NL 0.0 0.5 0.9 0.1 0.5 1.0 3.0 0.2 04 0.6 0.1 0.5 1.0 2.8
CL 687 916 96.6 | 523 833 91.1 | 4836 | 56.8 81.0 884 | 394 66.6 75.8 | 408.0
CCL 714  93.2 97.1 | 554 847 92.3 | 4941 | 651 86.1 92.0 | 443 712 79.7 | 4384

& 1:A red helmet is on a yellow
toilet in the dirt .v"

2:A yellow toilet with a red
helmet on top of it .

i 3:A yellow toilet with a red
helmet above it .v/

(@)

Query: A person sitting next to a laptop in a dark room.

% umbrella and petting a yak.v"

(b)

Query: a young person siting at a table with a cake

1:A child holding a flowered ' 1:A row of cars parked on a
street with parking meters.v”
2:A series of parking meters
and cars are located next to
each other.”

3:Two expired parking meters
on a city street. ¥

(©

2:Children helping clean an
elephants back with a brushx
3:A boy holding an umbrella
while standing next to
livestock. v

Fig. 6: The ability of our RCL to capture latent semantics for cross-modal retrieval with MRate=0.6. The figure shows some

retrieved examples of the image-to-text (as shown in (a)—(c))

and text-to-image (as shown in (d)-(f)) for RCL-SGR on the

validation set of MS-COCO dataset. We show the top-3 retrieved texts and images for each given image and text query,
respectively. The correctly matched ones are marked in green, and incorrectly matched in red. Specifically, the correctly
matched sentences are with green check marks, and the incorrectly matched ones are with red words and X marks. The
ground-truth matched images are outlined in green boxes and unmatched in red boxes.

4.7 Parameter Analysis

In this section, we investigate the influence of the hyper-
parameter 7 in Fig. 7 by plotting the average scores of
image-text matching (R@1, R@5, and R@10) with different 7
on the Flickr30K dataset. From the figure, one could observe
that our method performs stably in a large range of 7, i.e.,
from 0.01 to 0.1.

o]
o

S D
o o

Average(R@1, R@5, R@10)
N
o

0
le-3 5e-3 0.01 0.05 0.07 0.1 05
T

1

Fig. 7: Parameter analysis of RCL-SAF in terms of average
scores (R@Q1, RQ5, and RQ10) for image-text matching with
MRate=0.6 on the validation set of Flickr30K.

4.8 Benefit Study on PMPs

To comprehensively investigate the effectiveness of our
RCL, we conduct some comparison experiments with two

competitive baselines by filtering out the mismatched pairs
from the noisy data:

SAF-C and SGR-C: The variants are strong baselines,
which are trained on the clean pairs by discarding all
the mismatched pairs.

SAF [4]+CLIP [9] and SGR [4]+CLIP [9]: The pre-
trained CLIP (ViT-L/14@336px) [9] is applied to
filter out the predicted mismatched pairs, and the
remaining pairs with high cross-modal similarities
are utilized to train SGR and SAF.

The comparison results are shown in Table 8. From the table,
one could see that filtering out mismatched pairs could
alleviate the adverse impact of PMPs. Even if pretrained
CLIP can filter out some mismatched pairs to improve the
robustness of SGR and SAF against PMPs, they still perform
worse than SGR-C and SAF-C, indicating that there are
still some residual mismatched pairs. Additionally, under
high noise rates, many pairs will be filtered out, leading to
poor performance on Flick30K. This indicates that although
filtering out mismatched pairs can improve performance, it
also discards a large number of pairs that contain semantic
information. Our approach not only reduces the negative
impact of PMPs, but also leverages PMPs to improve per-
formance, embracing the best performance.

4.9 Visualization and Analysis

In this section, we visually verify the robustness of RCL and
conduct the case study.
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TABLE 8: Comparison with filtering-based baselines under
Flickr30K.

13
different mismatching rates (MRate) on MS-COCO 1K and

MS-COCO Flickr30K
Noise | Methods Image-to-Text Text-to-Image Sum Image-to-Text Text-to-Image Sum
R@l R@ Re@I0 | R@l R@5 R@I10 R@l R@5 Re@I0 | R@l R@5 R@I0

SAF [4] 715  94.0 975 | 578 86.4 919 | 499.1 | 62.8 887 939 | 49.7 736 78.0 | 446.7

SGR [4] 25.7  58.8 751 | 235 589 751 | 3171 | 559 815 889 | 402 668 753 | 408.6

SAF [4]+CLIP [9] | 740 952 98.0 | 587 88.0 944 | 5083 | 68.1 90.1 940 | 496 76.6 83.6 | 462.0

0.2 SGR [4]+CLIP [9] | 747 949 981 | 589 87.8 943 | 508.7 | 69.1 90.1 942 | 503 76.1 83.8 | 463.6
’ SAF-C 749 948 98.0 | 58.7 88.0 944 | 508.8 | 68.3 90.6 950 | 511 775 84.7 | 467.2
SGR-C 744 951 98.1 | 586 876 942 | 508.0 | 722 913 955 | 515 763 82.0 | 468.8
RCL-SAF 771 955 982 | 61.0 88.8 94.6 | 5152 | 72.0 917 958 | 53.6 79.9 86.7 | 479.7
RCL-SGR 770 95.5 98.1 | 61.3 88.8 948 | 5155 | 742 918 96.9 | 55.6 81.2 87.5 | 487.2

SAF [4] 13.5 438 482 | 160 39.0 50.8 | 211.3 74  19.6 26.7 44 120 17.0 87.1

SGR [4] 13 37 6.3 0.5 25 4.1 18.4 41 166 24.1 41 132 19.7 81.8

SAF [4]+CLIP [9] | 714 943 979 | 571 868 940 | 501.5 | 61.5 85.6 921 | 445 720 81.1 | 436.8

04 SGR [4]+CLIP [9] | 72.7 943 979 | 568 86.5 932 | 5014 | 622 86.0 921 | 446 714 78.6 | 4349
' SAF-C 724 943 978 | 575 86.9 93.8 | 502.7 | 63.9 887 932 | 467 735 814 | 4474
SGR-C 727 942 979 | 575 87.0 93.8 | 503.1 | 67.1 89.6 937 | 476 735 81.1 | 452.6
RCL-SAF 748 94.8 97.8 | 59.0 87.1 93.9 | 507.4 | 68.8 89.8 95.0 | 51.0 76.7 84.8 | 466.1
RCL-SGR 73.9 949 979 | 59.0 874 93.9 | 507.0 | 71.3 911 953 | 514 78.0 85.2 | 4723

SAF [4] 0.1 0.5 0.7 0.8 35 6.3 11.9 0.1 15 2.8 0.4 12 2.3 8.3

SGR [4] 0.1 0.6 1.0 0.1 0.5 11 34 15 6.6 9.6 0.3 23 42 24.5

SAF [4]+CLIP [9] | 684 93.0 968 | 543 85.0 927 | 4902 | 219 538 69.1 | 162 403 533 | 254.6

06 SGR [4]+CLIP [9] | 565 85.6 936 | 429 771 874 | 443.1 2.3 7.7 12.2 19 6.9 111 42.1
' SAF-C 69.1 926 969 | 540 849 92.8 | 4903 | 453 742 841 | 328 59.8 69.5 | 365.7
SGR-C 66.9  92.0 96.6 | 523 83.6 91.8 | 4832 | 471 722 821 | 318 574 66.6 | 357.2
RCL-SAF 701 93.1 96.8 | 54.5 844 919 | 490.8 | 63.9 84.8 91.7 | 43.0 712 79.4 | 434.0
RCL-SGR 714 932 971 | 554 847 923 | 4941 | 62.3 86.3 929 | 451 713 80.2 | 438.1

SAF [4] 0.2 0.8 14 0.1 0.5 1.0 4.0 0.0 0.8 12 0.1 0.5 11 3.7

SGR [4] 0.2 0.6 1.0 0.1 0.5 1.0 34 0.2 0.3 0.5 0.1 0.6 1.0 2.7

SAF [4]+CLIP [9] | 241 372 404 | 200 34.0 382 | 1939 3.1 8.6 13.8 0.5 1.8 3.0 30.8

08 SGR [4]+CLIP [9] | 22.0 546 698 | 17.0 475 64.8 | 275.7 0.5 11 2.1 0.2 0.9 17 6.5
' SAF-C 60.3 887 944 | 471 804 89.9 | 460.8 38 122 18.2 0.9 3.9 6.8 45.8
SGR-C 50.1 813 902 | 390 725 845 | 417.6 0.2 14 3.2 0.4 1.6 29 9.7
RCL-SAF 629 89.3 949 | 471 779 874 | 4595 | 45.0 728 80.8 | 30.7 56.5 67.3 | 353.1
RCL-SGR 63.2  89.3 952 | 47.6 787 88.0 | 462.0 | 471 70.5 794 | 303 56.1 66.3 | 349.7

4.9.1 Robustness Analysis against PMPs

To intuitively show the robustness performance of our
method, we illustrate pairwise similarity distributions of
TP-FP (i.e., true positive pairs versus false positive pairs),
TN-FN (i.e., true negative pairs versus false negative pairs),
and PP-NP (i.e., positive pairs versus negative pairs) of our
RCL-SGR and its variants (see Section 4.6) on MS-COCO.
Specifically, Figs. 4(a)-4(e), Figs. 4(f)—4(j), and Figs. 4(k)-
4(0) show the distributions of TP-FP, TN-EN, and PP-NP
on all training positive pairs, the training set, and the
validation set of MS-COCO, respectively. From Figs. 4(a)-
4(e), one could see that TR and CL could not separate the
true and false positive pairs apart enough, which degrades
their performance since the existence of PMPs. However,
our CCL could correctly separate the true and false positive
pairs well because our CCL only focuses on the negative
information resulting in robustness against the false positive
pairs as shown Fig. 4(e). From Figs. 4(f)-4(j), one could
see that true and false negative pairs are more difficult to
separate than true and false positive ones. Although our
method only focuses on negative information, it also could
discriminate the true and false negative pairs better because
of a low proportion of false negative pairs in the training
set. For the positive learning methods (TR and CL), they will
overfit the false positive pairs, and degrade the performance
of discriminating true or false negative pairs. Figs. 4(k)—4(o)
illustrate the similarity distributions of different methods
on the validation set of MS-COCO, which is consistent with
their retrieval performance. Furthermore, TR-HN and NL

will face very serious overfitting and underfitting problems,
thus leading to an optimization inability and the worst
performance for PMPs.

In conclusion, by paying more attention to positive ones,
TR will push more positive pairs to the high similarities.
However, this radical learning paradigm will easily overfit
the false positive and negative pairs, thus a considerable
number of negative ones are pushed to the high simi-
larity as shown in Figs. 4(b), 4(g) and 4(I). With a more
soft learning paradigm, CL could not extremely separate
the positive and negative pairs like TR, it could achieve
more correct separation. However, these positive learning
paradigms will face the overfitting problem. Thanks to our
CCL, the negative information could be fully leveraged to
alleviate the interference brought by PMPs, thus embracing
better separation and robustness against PMPs, which also
is demonstrated in Sections 4.3 and 4.6.

4.9.2 Retrieved Examples

To visually illustrate the ranking performance of our RCL,
we show some retrieved text and image samples using
image queries and text queries on the validation set of
MS-COCO in Fig. 6 like [53], respectively. Specifically, each
figure of Figs. 6(a)-6(c) shows one given image query (left)
and its top 3 ranked sentences (right). Similarly, each figure
of Figs. 6(d)-6(f) shows one given sentence query (top) and
its top 3 ranked images (bottom). Noted that in MS-COCO,
one image has five relevant sentences, but one sentence has
only one paired image. From these retrieved results, one
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Mismatched Text Retrieved Text

ol 1:Three jockeys racing horses on a beach with 1:A young child in a park next to a red bench and
3 waves in the background. % red bicycle that as training wheels. v’

2:A black and white image of three people riding  2:A lttle girl in a red jumpsuit and sweater is

horses. % near a red bike and red table. ¥

3:Jockeys racing horses across the sand at a 3:A little girl standing next to a red bike near

beach. x leaves. ¥/

4:A group of four people riding horses across a 4:Little girl looking down at leaves with her

dirt field. % bicycle with training wheels parked next to her. v

5:People on horses are riding around a field. X 5:Two bikes parked on a bench in a park. %

Image

(@)

1:Cars sit at a street light under the night sky. *  1:a lady sitting in a van with several seagulls
2:A city street soaked with rain at night. % landing on the top ¥
3:The sheep are white black and brown. % 2:A group of birds on a truck with a person inside. v’
4:Three lamb in a pen , some of which have 3:A woman in a truck watching the birds sit on
been sheered. % her open door and the top of the truck. v’
5:Several different colored sheep are ina pen. % 4:A group of seagull attacking the roof of some

peoples truck. ¥

5: a pair of very large birds are standing beside a

car%

(b)

1The toilet is under the window in the L:A wicker chair sits empty at a table with a
| bathroom. x small plant on it. %
| 2:A white toilet sitting in a bathroom next to a 2:Fuzzy chair and foot stool positioned in front of
tile wall. % table x
3:Tiled designs are on the wall of this bathroom. % 3:a couple of orange chairs in front of a table %
B 4:A bathroom area with a tiled wall and a white 4:View of table , brick wall , and white chair
toilet. % from above.
5:a mosiac done in tile in a bathroom by the 5:The wooden table with objects on it has
WL toilet x matching chairs. %

(©

Fig. 8: The robustness of our RCL against PMPs with
MRate=0.6. This figure shows some mismatched and re-
trieved examples for our RCL-SGR on the training set of
the MS-COCO dataset. (a)- (c) illustrate the mismatched
(middle) and top-5 retrieved (right) textual examples for
each given image (left). The correctly matched samples are
marked by green check marks, and incorrectly matched ones
are marked by red X marks.

could see that most of the relevant samples could be cor-
rectly retrieved across different modalities by our approach.
Although some retrieved examples are not correct based on
the ground truth, they also are semantically close to the
given queries. For example, one could see that all retrieved
images share the same semantic concept in Fig. 6(f), i.e.,
“riding a motorcycle with a woman” in the given text query.
Similar observations also could be found in other retrieved
results. In summary, although the inference model is trained
from PMPs, our RCL also could endow it with the ability to
learn correct semantics, and make the model robust against
mismatching information.

4.9.3 Mismatched Examples

To visually investigate the performance of our RCL against
PMPs, we also illustrate some mismatched examples and the
corresponding retrieved textual examples by our RCL-SGR
on the training set of MS-COCO as shown in Fig. 8. Like
Fig. 6, each figure of Figs. 8(a)-8(c) shows five mismatched
textual examples (middle) for a given image (left), and top-
5 retrieved results by our RCL. From the given examples,
one could see that our method could still capture the se-
mantics for cross-modal retrieval despite the presence of
mismatched pairs. Thanks to our CCL, our method could
not overfit the mismatched pairs. More specifically, although
the training set gives the wrong ground truths as shown
in the middle column, our method still could obtain the
correctly matched pairs as shown in the right column,
which indicates that our RCL is robust against PMPs and
alleviates overfitting on PMPs of the training data. Even
for the wrongly retrieved results as shown in the right
column, they also are semantically close to the given image.
For example, these sentences have captured the semantic
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concept of “chair” and “table” in Fig. 8(c). In other words,
our method could excavate the semantics from PMPs, and
semantically correlate cross-modal pairs, thus resulting in
alleviating the interference of mismatched pairs to improve
retrieval performance.

5 CONCLUSION

In this paper, we study a less-touched problem in the
community, namely, cross-modal retrieval with partially
mismatched pairs. To tackle this challenging problem, we
propose RCL which consists of CMCL and CCL. The for-
mer is used to compute the matching probability across
modalities, and the latter is a novel complementary learn-
ing paradigm that is specifically designed to overcome the
overfitting issue faced by CMCL and the underfitting issue
faced by complementary learning. Extensive experiments
are conducted on five benchmark cross-modal datasets to
verify the effectiveness, robustness, and generalization of
our method.
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